◀ ▲ ▶Branches / Algebra / Definition: Conjugate Elements of a Group
Definition: Conjugate Elements of a Group
Let $(G,\ast)$ be a group. Two elements $a,b\in G$ are called conjugate if there exists an element $h\in G$ with $$a=h^{-1}\ast b\ast h.$$ In this case, conjugate elements are denoted by $a\sim_G b.$ If the context of the group is clear, then we write $a\sim b.$
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Modler, Florian; Kreh, Martin: "Tutorium Algebra", Springer Spektrum, 2013