Definition: Conjugate Elements of a Group

Let $(G,\ast)$ be a group. Two elements $a,b\in G$ are called conjugate if there exists an element $h\in G$ with $$a=h^{-1}\ast b\ast h.$$ In this case, conjugate elements are denoted by $a\sim_G b.$ If the context of the group is clear, then we write $a\sim b.$


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Modler, Florian; Kreh, Martin: "Tutorium Algebra", Springer Spektrum, 2013