◀ ▲ ▶Branches / Algebra / Proposition: Criteria for Subgroups
Proposition: Criteria for Subgroups
Let \((G,\ast)\) be a group and \(H\) be a non-empty subset \(H\subseteq G\).
- \(H\) is of a subgroup of \(G\), if and only if \(a\ast b^{-1}\in H\) for all \(a,b\in H\).
- \(H\) is of a subgroup of \(G\), if and only if \(a\ast b^{-1}\in H\) for all \(a,b\in H\).
Table of Contents
Proofs: 1
Mentioned in:
Explanations: 1
Proofs: 2 3 4 5
Solutions: 6
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Modler, Florian; Kreh, Martin: "Tutorium Algebra", Springer Spektrum, 2013
- Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013