◀ ▲ ▶Branches / Algebra / Lemma: A Criterion for Associates
Lemma: A Criterion for Associates
Let $(R, + , \cdot)$ be an integral domain. Two elements $a,b$ are associates $a\sim b$ if and only if $a=cb$ for an element $c\in R^\ast$, where $(R^\ast,\cdot)$ is the group of units.
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Modler, Florian; Kreh, Martin: "Tutorium Algebra", Springer Spektrum, 2013
- Koch, H.; Pieper, H.: "Zahlentheorie - Ausgewählte Methoden und Ergebnisse", Studienbücherei, 1976