Definition: Dimension of a Vector Space

The dimension \(\operatorname {dim}(V)\) of a vector space \(V\) is the maximum number \(n\) of linearly independent vectors contained in \(V\). If no such maximum number exists, we set \(dim(V)=\infty\).

Definitions: 1 2 3 4 5 6 7 8
Proofs: 9 10
Theorems: 11


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Wille, D; Holz, M: "Repetitorium der Linearen Algebra", Binomi Verlag, 1994