◀ ▲ ▶Branches / Algebra / Definition: Elementary Gaussian Operations
Definition: Elementary Gaussian Operations
Let an SLE be given in the form of its extended coefficient matrix.
$$A|\beta:=\left(\begin{array}{ccc|c}\alpha_{11}& \ldots&\alpha_{1n}&\beta_1\\
\alpha_{21}& \ldots&\alpha_{2n}&\beta_2\\
\vdots&\vdots&\vdots&\vdots\\
\alpha_{m1}& \ldots&\alpha_{mn}&\beta_m\end{array}\right)$$
with elements $\beta_i,a_ij\in F$ of a field $F.$ The following are the elementary Gaussian operations:
Row operations
- Exchanging two rows of $A|\beta:$
$$R_j\leftrightarrow R_i.$$
- Multiplying a row of $A|\beta$ by a number $c\in F$ with $c\neq 0$: $$c R_i\rightarrow R_i.$$
- Adding a multiple of one row $R_i$ to another row $R_j:$
$$R_i+cR_j\rightarrow R_i.$$
Column operation
- Exchanging two columns of $A:$
$$C_j\leftrightarrow C_i.$$
Mentioned in:
Applications: 1
Definitions: 2
Lemmas: 3
Proofs: 4
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Knabner, P; Barth, W.: "Lineare Algebra - Grundlagen und Anwendungen", Springer Spektrum, 2013