Let \(A\in M_{n\times n}(F)\) be a square matrix. If there exists another square matrix \(B\in M_{n\times n}(F)\) which, when multiplied with \(A\), results in the identity matrix:
\[AB=BA=I,\]
then we call \(A\) an invertible matrix and \(B=A^{-1}\) its inverse matrix.
Examples: 1