Definition: Isomorphism

An isomorphism is a bijective homomorphism \(f:G\to H\) of two algebraic structures \((G,\ast)\), \((H,\cdot)\)

\[f(a\ast b)=f(a)\cdot f(b).\]

If an isomorphism exists between \((G,\ast)\), \((H,\cdot),\) we write \(G\simeq H\) and say that \(G\) and \(H\) are isomorphic.

Definitions: 1
Explanations: 2
Proofs: 3 4 5
Theorems: 6 7 8 9


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Knauer Ulrich: "Diskrete Strukturen - kurz gefasst", Spektrum Akademischer Verlag, 2001