Definition: Linear Combination

Let \(V\) be a vector space over a field \(F\). Consider finitely many vectors \(x_1,\ldots,x_n\in V\) and finitely many field elements \(\alpha_1,\ldots,\alpha_n\in F\). Then the vector \(y\in V\) with

\[y:=\alpha_1 x_1 + \ldots \alpha_n x_n\] is called the linear combination of the vectors \(x_1,\ldots,x_n\in V\).

Definitions: 1 2 3 4
Lemmas: 5
Proofs: 6


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Koecher Max: "Lineare Algebra und analytische Geometrie", Springer-Verlag Berlin Heidelberg New York, 1992, 3rd Volume