Proof
(related to Corollary: Rules for Exponentiation in a Group)
Ad $(1)$
Ad $(2)$ and $(3)$
Ad $(4)$
- The rule is only a special notation for the rule $(3)$, since $$\frac{x^n}{y^n}=x^n\ast y^{-n}=x^n\ast (y^{-1})^n=\left(x\ast y^{-1}\right)^n.$$
∎
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983