Proof

(related to Proposition: Simple Calculations Rules in a Group)

Ad 1)

Ad 2)

Ad 3)

Ad 4)

Exercise, in analogy to 3)

Ad 5)

Ad 6)

The element \((x\ast y)\) has the inverse element \((x\ast y)^{-1}\). It follows for all \(x,y\in G\): \[\begin{array}{rcl} (x\ast y)\ast(x\ast y)^{-1}&=&e\\ y^{-1}\ast x^{-1}\ast (x\ast y)\ast(x\ast y)^{-1}&=&y^{-1}\ast x^{-1}\ast e\\ y^{-1}\ast (x^{-1}\ast x)\ast y\ast(x\ast y)^{-1}&=&y^{-1}\ast x^{-1}\\ y^{-1}\ast e\ast y\ast(x\ast y)^{-1}&=&y^{-1}\ast x^{-1}\\ y^{-1}\ast y\ast(x\ast y)^{-1}&=&y^{-1}\ast x^{-1}\\ (y^{-1}\ast y)\ast(x\ast y)^{-1}&=&y^{-1}\ast x^{-1}\\ e\ast(x\ast y)^{-1}&=&y^{-1}\ast x^{-1}\\ (x\ast y)^{-1}&=&y^{-1}\ast x^{-1}\\ \end{array} \]

Ad 7)

Ad 8)


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs