Lemma: Subgroups and Their Cosets are Equipotent

Let \((G,\ast)\) be a group, \(H\subseteq G\) its subgroup. Then, for all $a\in G$, the left cosets $aH$ and the right cosets $Ha$ are equipotent to $H.$

Proofs: 1

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Modler, Florian; Kreh, Martin: "Tutorium Algebra", Springer Spektrum, 2013