◀ ▲ ▶Branches / Algebra / Lemma: Subgroups and Their Cosets are Equipotent
Lemma: Subgroups and Their Cosets are Equipotent
Let \((G,\ast)\) be a group, \(H\subseteq G\) its subgroup. Then, for all $a\in G$, the left cosets $aH$ and the right cosets $Ha$ are equipotent to $H.$
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Modler, Florian; Kreh, Martin: "Tutorium Algebra", Springer Spektrum, 2013