Definition: Symmetric Bilinear Form

Let \(V\) be a vector space over a field \(F\). A bilinear form \(\left\langle -,-\right\rangle \) on \(V\) is called symmetric, if

\[\left\langle v,w\right\rangle =\left\langle w,v\right\rangle \,\]

for all \(v,w\in V\).


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs
non-Github:
@Brenner


References

Adapted from CC BY-SA 3.0 Sources:

  1. Brenner, Prof. Dr. rer. nat., Holger: Various courses at the University of Osnabrück