Definition: Zero Matrix, Zero Vector

A zero matrix is a matrix \(E\in M_{m\times n}(F)\) of the form

$$ O:=\pmatrix{ 0 & 0 & \ldots & 0 \cr 0 & 0 & \ldots & 0 \cr \vdots & \vdots & \ddots & \vdots \cr 0 & 0 & \ldots & 0 \cr }$$ In \(O\), all elements equal \(0\in F\).

As a special case, a zero vector is a vector of the form

$$o=\pmatrix{0\\\vdots\\0},$$

or transposed,

$$o^T=\pmatrix{0,&\ldots,&0}.$$

Corollaries: 1
Examples: 2 3
Proofs: 4 5
Propositions: 6


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Wille, D; Holz, M: "Repetitorium der Linearen Algebra", Binomi Verlag, 1994