The above example calls for a sufficient condition, under which a function is Riemann-integrable. The following proposition provides such a condition.

Proposition: A Necessary and a Sufficient Condition for Riemann Integrable Functions

Let \([a,b]\) be a closed real interval. A function \(f:[a,b]\mapsto\mathbb R\) is Riemann integrable, if and only if

Proofs: 1

Proofs: 1 2


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983