Proposition: Additivity Theorem of Tangent

For all real numbers $x,y\in\mathbb R,$ for which the tangent functions $\tan(x),$ $\tan(y),$ and $\tan(x+y),$ are defined, the following additivity theorem holds:

$$\tan(x+y)=\frac{\tan(x)+\tan(y)}{1-\tan(x)\tan(y)}.$$

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983