◀ ▲ ▶Branches / Analysis / Proposition: Additivity Theorem of Tangent
Proposition: Additivity Theorem of Tangent
For all real numbers $x,y\in\mathbb R,$ for which the tangent functions $\tan(x),$ $\tan(y),$ and $\tan(x+y),$ are defined, the following additivity theorem holds:
$$\tan(x+y)=\frac{\tan(x)+\tan(y)}{1-\tan(x)\tan(y)}.$$
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983