◀ ▲ ▶Branches / Analysis / Proposition: Antiderivatives are Uniquely Defined Up to a Constant
Proposition: Antiderivatives are Uniquely Defined Up to a Constant
Let $I$ be a real interval. The functions $F,G:I\to\mathbb R$ are antiderivatives of a continuous function $f:I\to\mathbb R$ if and only if $F-G=c$ is constant.
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1
Propositions: 2
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983