Proposition: Antiderivatives are Uniquely Defined Up to a Constant

Let $I$ be a real interval. The functions $F,G:I\to\mathbb R$ are antiderivatives of a continuous function $f:I\to\mathbb R$ if and only if $F-G=c$ is constant.

Proofs: 1

Proofs: 1
Propositions: 2


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983