Processing math: 100%

Definition: Asymptotical Approximation

Two real sequences (a_n)_{n\in\mathbb N} and (b_n)_{n\in\mathbb N}, a_n,b_n\neq 0, are called asymptotically equivalent, notated by (a_n)_{n\in\mathbb N}\sim (b_n)_{n\in\mathbb N}, if the following limit equals 1: \lim_{n\to\infty}\frac{a_n}{b_n}=1.

Notes

Theorems: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983