◀ ▲ ▶Branches / Analysis / Definition: Asymptotical Approximation
Definition: Asymptotical Approximation
Two real sequences $(a_n)_{n\in\mathbb N}$ and $(b_n)_{n\in\mathbb N},$ $a_n,b_n\neq 0,$ are called asymptotically equivalent, notated by $(a_n)_{n\in\mathbb N}\sim (b_n)_{n\in\mathbb N},$ if the following limit equals $1$: $$\lim_{n\to\infty}\frac{a_n}{b_n}=1.$$
Notes
- In this definition, the sequences $(a_n)_{n\in\mathbb N}$ and $(b_n)_{n\in\mathbb N}$ do not have to be convergent themselves.
- In general, the sequence of the differences $(a_n-b_n)_{n\in\mathbb N}$ does not have to converge, either.
- If $(a_n)_{n\in\mathbb N}\sim(b_n)_{n\in\mathbb N},$ we say also that $(a_n)_{n\in\mathbb N}$ can be asymptotically approximated by $(b_n)_{n\in\mathbb N}$ and vice versa.
Mentioned in:
Theorems: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983