Proposition: Closed n-Dimensional Cuboids Are Compact

Let \(a_\nu,b_\nu\in\mathbb R\) be real numbers with \(a_\nu \le b_\nu\) for \(\nu=1,\ldots,n\). The closed $n$-dimensional cuboid \[Q:=\{(x_1,\ldots,x_n)\in\mathbb R^n:\quad a_\nu \le x_\nu \le b_\nu\}\] is a compact subset of the \(n\)-dimensional metric space of real numbers \(\mathbb R^n\).

Proofs: 1 Corollaries: 1

Proofs: 1 2


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 2, Differentialrechnung im \(\mathbb R^n\), Gewöhnliche Differentialgleichungen", Vieweg Studium, 1984