applicability: $\mathbb {R, C}$

Proposition: Complex Cauchy Sequences Vs. Real Cauchy Sequences

Let \((c_n)_{n\in\mathbb N}\) be a complex sequence \((c_n)_{n\in\mathbb N}\) is a complex Cauchy sequence, if and only if the real sequences of the real parts \((\Re(c_n))_{n\in\mathbb N}\) and imaginary parts \((\Im(c_n))_{n\in\mathbb N}\) are real Cauchy sequences.

Proofs: 1

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983