◀ ▲ ▶Branches / Analysis / Proposition: Complex Cauchy Sequences Vs. Real Cauchy Sequences
applicability: $\mathbb {R, C}$
Proposition: Complex Cauchy Sequences Vs. Real Cauchy Sequences
Let \((c_n)_{n\in\mathbb N}\) be a complex sequence \((c_n)_{n\in\mathbb N}\) is a complex Cauchy sequence, if and only if the real sequences of the real parts \((\Re(c_n))_{n\in\mathbb N}\) and imaginary parts \((\Im(c_n))_{n\in\mathbb N}\) are real Cauchy sequences.
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983