Proof

(related to Corollary: Derivative of a Constant Function)

Given a constant function \(f:\mathbb R\to\mathbb R\), \(f(x)=c\), \(c\in\mathbb R\), and by definition is of the derivative we have

\[f'(x)=\lim_{\substack{\xi\to x\\\xi\neq x}}\frac {f(\xi)-f(x)}{\xi-x}=\frac{c-c}{\xi-x}=0.\]


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983