Proof

(related to Corollary: Derivative of a Linear Function \(ax+b\))

Given a linear function \(f(x)=ax +b\), \(a,b\in\mathbb R\) , and by definition is of the derivative we have

\[f'(x)=\lim_{\substack{\xi\to x\\\xi\neq x}}\frac {f(\xi)-f(x)}{\xi-x}=\frac{a\xi+b-ax-b}{\xi-x}=a\cdot\frac{\xi-x}{\xi-x}=a.\]

Note that the derivative of a linear function does not depend on the constant \(b\), because it cancels out.


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983