◀ ▲ ▶Branches / Analysis / Proposition: Direct Comparison Test For Divergent Series
Proposition: Direct Comparison Test For Divergent Series
A real infinite series \(\sum_{k=0}^\infty x_k\) is divergent, if the is a divergent series $\sum_{k=0}^\infty y_k$ such that $x_k\ge y_k \ge 0$ for all $k\in\mathbb N.$
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983