◀ ▲ ▶Branches / Analysis / Proposition: Estimate for the Remainder Term of Exponential Function
Proposition: Estimate for the Remainder Term of Exponential Function
The absolute value of the remainder term \(r_{N + 1}(x)\) of the exponential series.
\[r_{N + 1}(x):=\sum_{n=N+1}^\infty\frac{x^n}{n! }\]
can be estimated by the inequation
\[
|r_{N + 1}(x)|\le 2\frac{|x|^{N+1}}{(N+1)!}\quad\text{for }|x|\le \frac {N+2}2.\]
Table of Contents
Proofs: 1
Mentioned in:
Definitions: 1
Proofs: 2
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983