◀ ▲ ▶Branches / Analysis / Definition: Even and Odd Complex Functions
Definition: Even and Odd Complex Functions
Let \(D\subseteq\mathbb C\) be a subset of complex numbers and let \(f:D\mapsto\mathbb C\) be a function. \(f\) is called:
- even, if \(f(z)=f(-z)\),
- odd, if \(f(z)=-f(-z)\)
for all \(z\in D\).
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Reinhardt F., Soeder H.: "dtv-Atlas zur Mathematik", Deutsche Taschenbuch Verlag, 1994, 10th Edition