◀ ▲ ▶Branches / Analysis / Definition: Even and Odd Complex Functions
Definition: Even and Odd Complex Functions
Let \(D\subseteq\mathbb C\) be a subset of complex numbers and let \(f:D\mapsto\mathbb C\) be a function. \(f\) is called:
 even, if \(f(z)=f(z)\),
 odd, if \(f(z)=f(z)\)
for all \(z\in D\).
Thank you to the contributors under CC BYSA 4.0!
 Github:

References
Bibliography
 Reinhardt F., Soeder H.: "dtvAtlas zur Mathematik", Deutsche Taschenbuch Verlag, 1994, 10th Edition