Proof
(related to Corollary: Exchanging the Limit of Function Values with the Function Value of the Limit of Arguments)
- Let $D\subset\mathbb R$ be a subset.
- By hypothesis, $f:D\to\mathbb R$ is a continuous function at an $a\in D.$
- By definition, this means that for every convergent real sequence $(x_n)_{n\in\mathbb N}$ with $x_n\in D$, $a\in D$ and $\lim_{n\to\infty}x_n=a$ we have that $\lim_{n\to\infty}f(x_n)=f(a).$
- On the other hand, we have that $f(\lim_{n\to\infty} x_n)=f(a),$ following the hypothesis, that we have a concrete real sequence $(x_n)_{n\in\mathbb N}$ given with $\lim_{n\to\infty} x_n=a.$
- Thus, we have that $\lim_{n\to\infty}f(x_n)=f(\lim_{n\to\infty} x_n).$
∎
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983