◀ ▲ ▶Branches / Analysis / Proposition: `\(\exp(0)=1\)` (Complex Case)
Proposition: \(\exp(0)=1\) (Complex Case)
For any convergent complex sequence \((x_n)_{n\in\mathbb N}\) with \(\lim_{n\to\infty} x_n=0\) we have \[\lim_{x\to\infty}\exp(x_n)=1.\]
In other words, \[\lim_{x\to 0}\exp(x)=1\] or the complex exponential function of \(0\) is \(1\):
\[\exp(0)=1.\]
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1 2 3
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983