Proposition: \(\exp(0)=1\) (Complex Case)

For any convergent complex sequence \((x_n)_{n\in\mathbb N}\) with \(\lim_{n\to\infty} x_n=0\) we have \[\lim_{x\to\infty}\exp(x_n)=1.\] In other words, \[\lim_{x\to 0}\exp(x)=1\] or the complex exponential function of \(0\) is \(1\): \[\exp(0)=1.\]

Proofs: 1

Proofs: 1 2 3


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983