Proposition: \(\exp(0)=1\)
For any convergent real sequence \((x_n)_{n\in\mathbb N}\) with \(\lim_{n\to\infty} x_n=0\) we have \[\lim_{x\to\infty}\exp(x_n)=1.\]
In other words \(\lim_{x\to 0}\exp(x)=1\) or
\[\exp(0)=1.\]
Table of Contents
Proofs: 1
Mentioned in:
Examples: 1
Proofs: 2 3 4 5 6 7 8 9
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983