◀ ▲ ▶Branches / Analysis / Corollary: Exponential Function and the Euler Constant
Corollary: Exponential Function and the Euler Constant
(related to Proposition: Functional Equation of the Exponential Function)
The exponential function of an integer $k$ equals the $k$-th power of the Euler's constant $e$, i.e. $\exp(k)=e^k$ for all $k\in\mathbb Z.$
Table of Contents
Proofs: 1
Mentioned in:
Examples: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983