Corollary: Exponential Function and the Euler Constant

(related to Proposition: Functional Equation of the Exponential Function)

The exponential function of an integer $k$ equals the $k$-th power of the Euler's constant $e$, i.e. $\exp(k)=e^k$ for all $k\in\mathbb Z.$

Proofs: 1

Examples: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983