◀ ▲ ▶Branches / Analysis / Proposition: Integral of Inverse Sine
Proposition: Integral of Inverse Sine
Let $-1 < a < b < 1$. The Riemann-integral of the inverse sine $\arcsin(x)$ on the closed real interval is given by the formula
$$\int_a^b\arcsin(x)dx= \left(x\arcsin(x)+\sqrt{1-x^2}\right)\;\begin{array}{|l}a\\\\b\end{array}.$$
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983