◀ ▲ ▶Branches / Analysis / Proposition: Integral of the Inverse Tangent
Proposition: Integral of the Inverse Tangent
Let $a < b$. The Riemann-integral of the inverse tangent $\arctan(x)$ on the closed real interval is given by the formula
$$\int_a^b\arctan(x)dx= \left(x\arctan(x)-\frac 12\log(1+x^2)\right)\;\begin{array}{|l}a\\\\b\end{array}.$$
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983