Theorem: Intermediate Root Value Theorem

Let \([a,b]\) be a closed real interval and let \(f:[a,b]\to\mathbb R\) be a continuous real function with $f(a) < 0$ and $f(b) > 0$ (or $f(a) > 0$ and $f(b) < 0$). Then there is a root value $x\in[a,b]$ with \(f(x)=0\).

Proofs: 1

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983