Theorem: Intermediate Value Theorem

Let \([a,b]\) be a closed real interval and let \(f:[a,b]\to\mathbb R\) be a continuous real function. Then \(f\) takes any value between \(f(a)\) and \(f(b)\), i.e. for each \(u\in [f(a),f(b)]\) there is at least one \(c\in[a,b]\) with \(f( c)=u\).

280px-Intermediatevaluetheorem

(Public Domain, image uploaded by Kpengboy)

Proofs: 1

Proofs: 1 2


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983