Proposition: Inverse Hyperbolic Sine

The hyperbolic sine $\mathbb R\to\mathbb R,~x\to\sinh(x)$ is invertible for all real numbers $x\in\mathbb R.$ Its inverse function is called the inverse hyperbolic sine $$\operatorname{arsinh}:\mathbb R\to\mathbb R,$$ and can be calculated using the formula $$\operatorname{arsinh}(x)=\ln\left(x+\sqrt{1+x^2}\right).$$

The following graph visualizes the inverse hyperbolic sine function:

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983