Processing math: 100%

Proposition: Inverse Tangent and Complex Exponential Function

Let x\in\mathbb R be real number and let \phi=\arctan(x) (where \arctan denotes the inverse tangent of x). Then the complex exponential function of 2 i\phi can be calculated by

\exp(2 i \phi)=\frac{1-ix}{1+ix}.

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983