◀ ▲ ▶Branches / Analysis / Proposition: Inverse Tangent and Complex Exponential Function
Proposition: Inverse Tangent and Complex Exponential Function
Let $x\in\mathbb R$ be real number and let $\phi=\arctan(x)$ (where $\arctan$ denotes the inverse tangent of $x$). Then the complex exponential function of $2 i\phi$ can be calculated by
$$\exp(2 i \phi)=\frac{1-ix}{1+ix}.$$
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983