◀ ▲ ▶Branches / Analysis / Proposition: Inverse Tangent and Complex Exponential Function
Proposition: Inverse Tangent and Complex Exponential Function
Let x\in\mathbb R be real number and let \phi=\arctan(x) (where \arctan denotes the inverse tangent of x). Then the complex exponential function of 2 i\phi can be calculated by
\exp(2 i \phi)=\frac{1-ix}{1+ix}.
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983