◀ ▲ ▶Branches / Analysis / Proposition: Legendre Polynomials and Legendre Differential Equations
Proposition: Legendre Polynomials and Legendre Differential Equations
The $n$-th order Legendre polynomial is defined by $$P_{n}(x)={1 \over 2^{n}n!}{d^{n} \over dx^{n}}\left[(x^{2}-1)^{n}\right].$$
It is the solution of the following ordinary Legendre differential equations:
$$(1-x^2)P_n^{\prime\prime}(x)-2xP_n^\prime(x)+n(n+1)P_{n}(x)=0.$$
The equations are named after Adrien-Marie Legendre (1752 - 1833).
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983