◀ ▲ ▶Branches / Analysis / Proposition: Limit of Nested Real Intervals
Proposition: Limit of Nested Real Intervals
Let $(I_n)_{n\in\mathbb N}$ be nested real intervals. Then there is exactly one real number $x\in\mathbb R$ being their limit $$\lim_{n\to\infty}I_{n}=x.$$
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983
- Kane, Jonathan: "Writing Proofs in Analysis", Springer, 2016