◀ ▲ ▶Branches / Analysis / Proposition: Limits of Polynomials at Infinity
Proposition: Limits of Polynomials at Infinity
Let $p:\mathbb R\to\mathbb R$ be a real polynomial with the degree $n$, i.e. $$p(x):=a_nx^n + \ldots + a_1x + a_0.$$
Then there are the following limits of $p$ at infinity:
$$\begin{array}{rcl}\lim_{x\to+\infty}p(x)&=&+\infty\\\lim_{x\to-\infty}p(x)&=&\cases{+\infty,& if$n$is even\\-\infty,&if
$n$is odd.}\end{array}$$
Table of Contents
Proofs: 1 Corollaries: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983