◀ ▲ ▶Branches / Analysis / Proposition: Linearity and Monotony of the Riemann Integral for Step Functions
Proposition: Linearity and Monotony of the Riemann Integral for Step Functions
Let \(\phi,\psi\in T[a,b]\) be step functions. The Riemann integral for step functions fulfills the following rules:
Linearity Rules:
\[\int_a^b(\phi+\psi)(x)dx=\int_a^b\phi(x)dx+\int_a^b\psi(x)dx\]
\[\int_a^b(\lambda\cdot \phi)(x)dx=\lambda\cdot\int_a^b\phi(x)dx\quad\quad(\text{for all }\lambda\in\mathbb R)\]
Monotony Rule:
\[\phi\le \psi\Rightarrow \int_a^b\phi(x)dx\le \int_a^b\psi(x)dx\]
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1 2
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983