◀ ▲ ▶Branches / Analysis / Proposition: Minkowski's Inequality for Integral p-norms
Proposition: Minkowski's Inequality for Integral p-norms
Let $[a,b]$ be a closed real interval, $p\ge 1$ be a real number and let $f,g:[a,b]\to\mathbb R$ be two Riemann-integrable functions. The for the integral p-norms the Minkowski's inequality holds:
$$||f+g||_p\le ||f||_p+||g||_p,\quad\forall p\ge 1.$$
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983