◀ ▲ ▶Branches / Analysis / Definition: Open and Closed Discs
Definition: Open and Closed Discs
Let $z\in\mathbb C$ be a complex number and let $r > 0$ be a positive real number. The subset $D\subset\mathbb C$ of the complex plane is called:
- open disc, if $D:=\{\alpha\in\mathbb C\mid |z-\alpha| < r\},$ i.e. if $D$ constitutes open ball in the complex plane.
- closed disc, if $D:=\{\alpha\in\mathbb C\mid |z-\alpha| \le r\}.$
Above, $|\cdot|$ denotes the absolute value of complex numbers.
Example
Mentioned in:
Definitions: 1 2 3
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Lang, Serge: "Algebra - Graduate Texts in Mathematics", Springer, 2002, 3rd Edition
- Kneser, Hellmuth: "Mathematische Lehrbücher - Funktionentheorie", Vanderhoeck & Ruprecht, 1958