Proposition: Positive and Negative Parts of a Riemann-Integrable Functions are Riemann-Integrable

Let $a < b$, let $[a,b]$ be a closed real interval and let $f:[a,b]\to\mathbb R$ be a Riemann-integrable function. Then the positive and negative parts $f_+$, $f_-$ of $f$ are also Riemann-integrable.

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983