◀ ▲ ▶Branches / Analysis / Proposition: Preservation of Inequalities for Limits of Functions
Proposition: Preservation of Inequalities for Limits of Functions
Let $D\subseteq\mathbb R$ be a subset of real numbers, $a\in\mathbb R$ be a real number, and let $f:D\to\mathbb R$ be a function with the limit $\lim_{x\to a}f=L.$ Then,
- If $f(x) > 0$ for all $x\in D,$ then $L \ge 0.$
- If $f(x) < 0$ for all $x\in D,$ then $L \le 0.$
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Kane, Jonathan: "Writing Proofs in Analysis", Springer, 2016