Proposition: Product of a Convergent Real Sequence and a Real Sequence Tending to Infinity

Let $(a_n)_{n\in\mathbb N}$ be a real sequence tending to infinity (i.e. either $+\infty$ or $-\infty$). Let $(b_n)_{n\in\mathbb N}$ be a real sequence tending to some real number $b$, i.e. with $\lim_{n\to\infty} b_n=b.$ Then the real sequence $(b_n\cdot a_n)_{n\in\mathbb N}$ is tending to infinity as follows:

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983