◀ ▲ ▶Branches / Analysis / Proposition: Product of a Real Number and a Convergent Real Sequence
applicability: $\mathbb {N, Z, Q, R, C}$
Proposition: Product of a Real Number and a Convergent Real Sequence
Let \((a_n)_{n\in\mathbb N}\) be a convergent real sequence with \(\lim_{n\rightarrow\infty} a_n=a\) and let \(x\in\mathbb R\) be a real number. Consider the real sequence \((c_n)_{n\in\mathbb N}\) with \(c_n:=x a_n\). Then \((c_n)_{n\in\mathbb N}\) is also convergent and its limit equals \(\lim_{n\rightarrow\infty} c_n=xa\).
Notes
- This proposition can be expressed in the short form: \[\lim_{n\rightarrow\infty} (x \cdot a_n)=x \cdot \lim_{n\rightarrow\infty} a_n.\]
- The proposition's proof can be transferred also to sequences of other kinds than real numbers, for example, the complex numbers.
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1 2 3 4 5
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983