Theorem: Rolle's Theorem

Let $a < b,$ $[a,b]$ be a closed real interval, and $f:[a,b]\to\mathbb R$ a continuous function with $f(a)=f(b)$. Further, let $f$ be differentiable on the open real interval $]a,b[.$ Then there is an $\xi\in ]a,b[$ with $f'(\xi)=0.$

In particular, between any two roots of $f$ there is a root of $f'$.

This theorem is named after Michel Rolle (1652 - 1719).

Proofs: 1

Persons: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983