Processing math: 100%

Proposition: Sum of a Convergent Real Sequence and a Real Sequence Tending to Infininty

Let (a_n)_{n\in\mathbb N} be a real sequence tending to infinity (i.e. either +\infty or -\infty). Let (b_n)_{n\in\mathbb N} be a real sequence tending to some real number b, i.e. with \lim_{n\to\infty} b_n=b. Then the real sequence (a_n+b_n)_{n\in\mathbb N} is tending to infinity as (a_n)_{n\in\mathbb N} does.

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983