◀ ▲ ▶Branches / Analysis / Proposition: Sum of a Convergent Real Sequence and a Real Sequence Tending to Infininty
Proposition: Sum of a Convergent Real Sequence and a Real Sequence Tending to Infininty
Let $(a_n)_{n\in\mathbb N}$ be a real sequence tending to infinity (i.e. either $+\infty$ or $-\infty$). Let $(b_n)_{n\in\mathbb N}$ be a real sequence tending to some real number $b$, i.e. with $\lim_{n\to\infty} b_n=b.$ Then the real sequence $(a_n+b_n)_{n\in\mathbb N}$ is tending to infinity as $(a_n)_{n\in\mathbb N}$ does.
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983