(related to Proposition: Sum of Convergent Real Sequences)
Let \(\epsilon > 0\). Because the real sequences \((a_n)_{n\in\mathbb N}\) and \((b_n)_{n\in\mathbb N}\) are convergent with \(\lim_{n\rightarrow\infty} a_n=a\) and \(\lim_{n\rightarrow\infty} b_n=b\), it follows that
Therefore, for all \(n > \max(N(\epsilon),M(\epsilon))\), it follows from triangle property of the absolute value that \[|(a_n + b_n) - (a + b)| \le |a_n - a| + |b_n - b| < \epsilon + \epsilon=2\epsilon.\]
Since \(\epsilon\) can be arbitrarily small chosen, it follows that
\[\lim_{n\rightarrow\infty} (a_n + b_n)=\lim_{n\rightarrow\infty} a_n + \lim_{n\rightarrow\infty} b_n= a + b.\]