Corollary: Taylor's Formula for Polynomials

(related to Theorem: Taylor's Formula)

Let $I\subset\mathbb R$ be an interval and $f:I\to\mathbb R$ be a $(n+1)$ times continuously differentiable function with $f^{\{n+1\}}(x)=0$ for all $x\in I.$ Then $f$ is a real polynomial of degree $\le n.$

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983