◀ ▲ ▶Branches / Analysis / Corollary: Taylor's Formula for Polynomials
Corollary: Taylor's Formula for Polynomials
(related to Theorem: Taylor's Formula)
Let $I\subset\mathbb R$ be an interval and $f:I\to\mathbb R$ be a $(n+1)$ times continuously differentiable function with $f^{\{n+1\}}(x)=0$ for all $x\in I.$ Then $f$ is a real polynomial of degree $\le n.$
Table of Contents
Proofs: 1
Thank you to the contributors under CC BYSA 4.0!
 Github:

References
Bibliography
 Forster Otto: "Analysis 1, Differential und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983