◀ ▲ ▶Branches / Analysis / Proposition: Uniqueness Of the Limit of a Sequence
applicability: $\mathbb {N, Z, Q, R, C}$
Proposition: Uniqueness Of the Limit of a Sequence
If a real sequence $(x_n)_{n\in N}$ is convergent, then its limit is unique.
Note
- This is a special case for real sequences.
- The generalized result is proven for any metric space here.
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983
- Forster Otto: "Analysis 2, Differentialrechnung im \(\mathbb R^n\), Gewöhnliche Differentialgleichungen", Vieweg Studium, 1984