◀ ▲ ▶Branches / Combinatorics / Proposition: Indicator Function and Set Operations
Proposition: Indicator Function and Set Operations
Let $S$ be a set, $A,B\subseteq S$ be subsets with the indicator functions $\chi_A$ and $\chi_B.$ Then the equations hold:
- for the set union: $\chi_{A\cup B}=\max(\chi_A,\chi_B)=\chi_A+\chi_B-\chi_{A\cap B},$
- for the set intersection: $\chi_{A\cap B}=\min(\chi_A,\chi_B),$
- for the set complement: $\chi_{A^C}=\chi_S-\chi_A,$
- for the set difference: $\chi_{A\setminus B}=\chi_A-\chi_A\cdot\chi_B,$
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Flachsmeyer, Jürgen: "Kombinatorik", VEB Deutscher Verlag der Wissenschaften, 1972, 3rd Edition